
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 3 October 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 2 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 10 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 2.1 Induction.

(a) Prove via mathematical induction that for all integers n ≥ 5,

2n > n2 .

Solution:

• Base Case.
Let n = 5. �en:

25 = 32 > 25 = 52 .

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is,

2k > k2 .

• Inductive Step.
We must show that the property holds for k + 1.

2k+1 = 2 · 2k
I.H.
> 2 · k2

= k2 + k2

≥ k2 + 5k

= k2 + 2k + 3k

≥ k2 + 2k + 15

> k2 + 2k + 1

= (k + 1)2 .

By the principle of mathematical induction, this is true for every positive integer n.

(b) Let x be a real number. Prove via mathematical induction that for every positive integer n, we have

(1 + x)n =

n∑
i=0

(
n

i

)
xi ,

where (
n

i

)
=

n!

i!(n− i)!
.

We use a standard convention 0! = 1, so
(
n
0

)
=
(
n
n

)
= 1 for every positive integer n.

Hint: You can use the following fact without justi�cation: for every 1 ≤ i ≤ n,(
n

i

)
+

(
n

i− 1

)
=

(
n+ 1

i

)
.

Solution:

We will use the identity from the hint to show (via mathematical induction) that

(1 + x)n =

n∑
i=0

(
n

i

)
xi .

• Base Case.
Let n = 1. �en (1 + x)1 =

(
1
0

)
x0 +

(
1
1

)
x1 =

∑n
i=0

(
n
i

)
xi.

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is,

(1 + x)k =

k∑
i=0

(
k

i

)
xi.

• Inductive Step.
We must show that the property holds for k + 1.

(1 + x)k+1 = (1 + x)(1 + x)k

I.H.
= (1 + x)

k∑
i=0

(
k

i

)
xi

=
(k∑
i=0

(
k

i

)
xi
)
+
(k∑
i=0

(
k

i

)
xi+1

)
=
(k∑
i=0

(
k

i

)
xi
)
+
(k+1∑
i=1

(
k

i− 1

)
xi
)

=

(
k

0

)
x0 +

k∑
i=1

((k
i

)
xi +

(
k

i− 1

)
xi
)
+

(
k

k

)
xk+1

=

(
k + 1

0

)
x0 +

k∑
i=1

(
k + 1

i

)
xi +

(
k + 1

k + 1

)
xk+1 =

k+1∑
i=0

(
k + 1

i

)
xi.

By the principle of mathematical induction, this is true for every positive integer n.

2

Exercise 2.2 Growth of Fibonacci numbers (1 point).

�ere are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that
the Fibonacci numbers are de�ned by f0 = 0, f1 = 1 and the recursion relation fn+1 = fn + fn−1 for
all n ≥ 1. For example, f2 = 1, f5 = 5, f10 = 55, f15 = 610.

(a) Prove that fn+1 ≤ 1.75n for n ≥ 0.

Solution:

• Base Case. We prove that the inequality holds for n = 0 and n = 1.
For n = 0: f1 = 1 ≤ 1.750 = 1, which is true. For n = 1: f2 = 1 ≤ 1.751 = 1.75, which is
true.

• Induction Hypothesis. We assume that it is true for n = k and n = k + 1, i.e.,

fk+1 ≤ 1.75k

fk+2 ≤ 1.75k+1

• Inductive Step. We must show that the property holds for n = k + 2, k ≥ 0. We have:

fk+3 = fk+2 + fk+1

≤ 1.75k+1 + 1.75k

= 1.75k(1.75 + 1)

= 1.75k · 2.75
≤ 1.75k · 3.0625
= 1.75k · 1.752

= 1.75k+2

By the principle of mathematical induction, this is true for every integer n ≥ 0.

(b) Prove that fn ≥ 1
3 · 1.5

n for n ≥ 1.

Solution:

• Base Case. We prove that the inequality holds for n = 1 and n = 2.
For n = 1: f1 = 1 ≥ 0.5 = 1

3 · 1.5, which is true.
For n = 2: f2 = 1 ≥ 0.75 = 1

3 · 1.5
2, which is true.

• Induction Hypothesis. We assume that it is true for n = k and n = k + 1, i.e.,

fk ≥
1

3
1.5k

fk+1 ≥
1

3
1.5k+1

3

• Inductive Step. We must show that the property holds for n = k + 2, k ≥ 1. We have:

fk+2 = fk+1 + fk

≥ 1

3
1.5k+1 +

1

3
1.5k

=
1

3
1.5k · (1.5 + 1)

=
1

3
1.5k · 2.5

≥ 1

3
1.5k · 2.25

=
1

3
1.5k · 1.52

=
1

3
1.5k+2

By the principle of mathematical induction, this is true for every integer n ≥ 1.

Asymptotic Notation
When we estimate the number of elementary operations executed by algorithms, it is o�en useful
to ignore constant factors and instead use the following kind of asymptotic notation, also called O-
Notation. We denote by R+ the set of all (strictly) positive real numbers and by N the set of all (strictly)
positive integers.

De�nition 1 (O-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. O(f) is the set
of all functions g : N → R+ such that there exists C > 0 such that for all n ∈ N , g(n) ≤ Cf(n).

In general, we say that g ≤ O(f) if De�nition 1 applies a�er restricting the domain to some N =
{n0, n0 + 1, . . .}. Some sources use the notation g = O(f) or g ∈ O(f) instead.

Instead of working with this de�nition directly, it is o�en easier to use limits in the way provided by
the following theorem.

�eorem 1 (�eorem 1.1 from the script). Let f : N → R+ and g : N → R+.

• If lim
n→∞

f(n)
g(n) = 0, then f ≤ O(g) and g 6≤ O(f).

• If lim
n→∞

f(n)
g(n) = C ∈ R+, then f ≤ O(g) and g ≤ O(f).

• If lim
n→∞

f(n)
g(n) =∞, then f 6≤ O(g) and g ≤ O(f).

�e theorem holds all the same if the functions are de�ned on R+ instead of N . In general, lim
n→∞

f(n)
g(n)

is the same as lim
x→∞

f(x)
g(x) if the second limit exists.

�e following theorem can also be helpful when working with O-notation.

�eorem 2. Let f, g, h : N→ R+. If f ≤ O(h) and g ≤ O(h), then

1. For every constant c ≥ 0, c · f ≤ O(h).

4

2. f + g ≤ O(h).

Notice that for all real numbers a, b > 1, loga n = loga b · logb n (where loga b is a positive constant).
Hence loga n ≤ O(logb n). So you don’t have to write bases of logarithms in asymptotic notation, that
is, you can just write O(log n).

Exercise 2.3 O-notation quiz.

(a) Prove or disprove the following statements. Justify your answer.

(1) n
2n+3
n+1 = O(n2)

Solution:

True by �eorem 1, since

lim
n→∞

n
2n+3
n+1

n2
= lim

n→∞
n

2n+3
n+1
−2 = lim

n→∞
n

2n+3−2n−2
n+1 = lim

n→∞
n

1
n+1 = lim

n→∞
e

logn
n+1 = 1.

(2) e1.2n = O(en)

Solution:

False by �eorem 1, since

lim
n→∞

e1.2n

en
= lim

n→∞
e1.2n−n = lim

n→∞
e0.2n =∞.

(3) log(n4 + n3 + n2) = O(log(n3 + n2 + n))

Solution:

True by �eorem 1, since

lim
n→∞

log(n3 + n2 + n)

log(n4 + n3 + n2)

L’Hôpital
= lim

n→∞

3n2+2n+1
n3+n2+n

4n3+3n2+2n
n4+n3+n2

= lim
n→∞

(3n2 + 2n+ 1)(n4 + n3 + n2)

(n3 + n2 + n)(4n3 + 3n2 + 2n)

= lim
n→∞

3n6 + P (n)

4n6 +Q(n)
= lim

n→∞

(
3n6

4n6 +Q(n)
+

P (n)

4n6 +Q(n)

)
=

3

4
+ lim
n→∞

P (n)

4n6 +Q(n)

where degP = degQ = 5. For all α and k ≤ 5, αnk

4n6+Q(n)
≤ αnk

4n6 = α
4n

k−6 → 0, hence
P (n)

4n6+Q(n)
→ 0 by �eorem 2. �erefore,

lim
n→∞

log(n3 + n2 + n)

log(n4 + n3 + n2)
=

3

4
.

(b) Find f and g as in �eorem 1 such that f = O(g), but the limit limn→∞
f(n)
g(n) does not exist. �is

proves that the �rst point of �eorem 1 provides a su�cient, but not a necessary condition for
f = O(g).

5

Solution:

Let f(n) = 1 + (−1)n and g(n) = 1. We have f(n)
g(n) = 1+(−1)n

1 = 1 + (−1)n, which has no limit
when n→∞.

Exercise 2.4 Asymptotic growth of ln(n!).

Recall that the factorial of a positive integer n is de�ned as n! = 1× 2× · · · × (n− 1)× n.

a) Show that ln(n!) ≤ O(n lnn).

Hint: You can use the fact that n! ≤ nn for n ≥ 1 without proof.

Solution:

Solution: From the hint, we have n! ≤ nn, which implies that ln(n!) ≤ n lnn and thus ln(n!) ≤
O(n lnn).

b) Show that n lnn ≤ O(ln(n!)).

Hint: You can use the fact that
(
n
2

)n
2 ≤ n! for n ≥ 1 without proof.

Solution:

From the hint, we have n! ≥
(
n
2

)n/2. Now by the monotonicity of the logarithm we have

ln(n!) ≥ ln

((n
2

)n/2)
=
n

2
(lnn− ln 2) ,

so n lnn ≤ 2 ln(n!) + 2 ln 2. By �eorem 1, n lnn ≤ O(ln(n!)).

Exercise 2.5 Triplet Search (2 points).

Given an array of n integers, and an integer t, design an algorithm that checks if there exists three (not
necessarily di�erent) elements of the array a, b, c such that a+ b+ c = t.

(a) Design a simple O(n3) algorithm.

Solution:

�e algorithm can simply check all n3 triples (A[i], A[j], A[k]) of elements in A by using three
nested loops with indices (i, j, k) that iterate over all integers in [1, n]. For each such triple, we
check whether A[i] +A[j] +A[k] = t and report success (“YES”) if we ever �nd a satisfying triple.
Otherwise, we return failure (“NO”). �e pseudocode is given below.

Algorithm 1 Input: an array A of n integers, and an integer t.
for i = 1, 2, . . . , n do

for j = 1, 2, . . . , n do
for k = 1, 2, . . . , n do

if A[i] +A[j] +A[k] = t then
return “YES” and exit

return “No”

�e algorithm clearly works by checking all n3 possibilities, hence it is trivially correct and its
runtime is clearly O(n3).

6

(b) Suppose that elements of the array are integers in the range [1, 100n], and that t ≤ 300n. Design
a be�er algorithm with runtime O(n2) to solve the same problem, assuming the constraints.

Hint: You can use a separate array with O(n) entries to help you. Start with the “naive” algorithm
from (a) and try removing one of the loops with a smart lookup using the new array.

Hint: a+ b+ c = t implies that a = t− b− c.

Solution:

We use a separate O(n)-sized array B[1 . . . 100n], which is originally initialized to value 0. First,
in O(n) time, we mark every entry that appears in A with a value of 1 in B: more precisely, we set
B[A[i]] ← 1 for all i ∈ {1, . . . , n}. �en, we use two nested loops i, j to iterate over all possible
n2 pairs of elements from the array A. In each iteration, we check whether there exists an element
A[k] such that A[i] + A[j] + A[k] = t. In other words, we check if t− A[i]− A[j] is in the array,
which can be accomplished inO(1) time by checking if t−A[i]−A[j] �ts within the range [1, 100n]
and then if B[t − A[i] − A[j]] = 1; if both of these are true, we output “Yes”. At the end of the
algorithm, if we didn’t output yet, we output “No”. A pseudocode equivalent to the above algorithm
is given below.

Algorithm 2 Input: an array A of n integers, and an integer t.
B[1 . . . 100n]← (0, 0, . . . , 0)
for i = 1, 2, . . . , n do

B[A[i]]← 1

for i = 1, 2, . . . , n do
for j = 1, 2, . . . , n do

if 1 ≤ t−A[i]−A[j] ≤ 100n AND B[t−A[i]−A[j]] = 1 then
return “YES” and exit

return “No”

It is clear from the algorithm that the runtime is O(n2) as the initialization of B took O(n), and
then each iteration over the n2 pairs took O(1) time, for a total of O(n)+n2 ·O(1) = O(n2) time.

Finally, we argue correctness. If there are no satisfying triplets in the input, the algorithm clearly
outputs “NO” as whenever the algorithm outputs “YES” it �nds a satisfying triplet in the input
(namely, A[i], A[j], and some A[k] = t − A[i] − A[j] which is guaranteed to exist by algorithm
design). If there exists a satisfying triplet (say) i∗, j∗, k∗, then during the nested loop iteration at
some point we will have i = i∗ and j = j∗. At that point, t−A[i∗]−A[j∗] is within [1, 100n] and
t−A[i∗]−A[j∗] exists in the array A (namely, as A[k∗]), hence it would be found. �is concludes
the correctness proof.

(c)* Suppose now that, unlike in (b), we don’t have a bound on the size of the integers elements of A
nor on t (but we can still perform arithmetic operations on them in O(1) time). However, they are
given in increasing order in A, i.e., A[1] ≤ A[2] ≤ . . . A[n]. Design an O(n2) algorithm to solve
the same problem, assuming the constraints.

Hint: Exploit the increasing order of A to leverage the computation done in the previous step to help
you in the next one.

Solution:

We use two nested loops i, j to iterate over all possible n2 pairs of elements from the array A,
in order. However, in parallel to j, we will also store a value k satisfying the invariant that k

7

is the smallest index in [1, n] such that A[i] + A[j] + A[k] ≥ t. Each time we increment j we
need to keep decreasing k until the invariant would start failing. At that point, we check whether
A[i]+A[j]+A[k] = t and report we found a satisfying triple if this condition is ever true. Otherwise,
we report failure at the end. �e pseudocode implementing this algorithm follows.

Algorithm 3 Input: an array A of n integers, and an integer t.
for i = 1, 2, . . . , n do

k ← n
for j = 1, 2, . . . , n do

while k ≥ 1 and A[i] +A[j] +A[k − 1] ≥ t do . Can we decrease k and keep the invariant?
k ← k − 1

if A[i] +A[j] +A[k] = t then
return “YES” and exit

return “No”

�e above invariant is kept true (a�er time while loop terminates) since each time we increment
j, the value of A[i] + A[j] + A[k] increases, hence we need to decrease k (zero or possibly large)
number of times until decreasing it any further would makeA[i]+A[j]+A[k] < t. �e while loop
directly implements this, hence the invariant is clearly satis�ed.

For correctness, if there are no satisfying triplets, the algorithm cannot �nd any (since the algorithm
outputs “YES” only upon explicitly �nding a satisfying triplet). On the other hand, if there exists
a satisfying triplet i∗, j∗, k∗ such that A[i∗] + A[j∗] + A[k∗] = t, then at some point we will have
i = i∗, j = j∗. �en, by the invariant, k will be the largest index with A[i∗] + A[j∗] + A[k] ≥ t.
Since there exists a value k∗ such that A[i∗] +A[j∗] +A[k∗] = t and A is sorted, the largest value
of k must satisfy also A[i∗] +A[j∗] +A[k] = t. �is proves correctness of the algorithm.

For runtime, there are at most n iterations of the i loop. In each such iteration of i, k can be
decremented a total of n times, hence the total number of decrements is at most n (for each �xed
value i). Hence, the total number of times the while loop iterates (in the entire program) is O(n2).
All other operations beside the while-loop are also O(n2), hence the runtime is O(n2).

8

